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Summary. An equivalence relation on square-cell configurations, which we call 
animals, is formulated precisely, using the similarity criterion of "seeing" parts of 
the shape of the animal from its interior, and an operation called "squashing", 
leading to a smaller animal. It is noted that there is a unique smallest animal in 
each resulting equivalence class, called the canonical animal of its class. It is 
proposed that the number of cells in a canonical animal A serves as a measure 
of complexity of any animal similar to A. The formulation of the canonical 
animal is suggested as a tool for characterizing shapes of monolayer clusters of 
adsorbed molecules on square lattices, a problem of importance in chemical 
catalysis. 
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1. Introduction 

The characterization of shapes of two-dimensional domains on a plane is of 
importance in both pure and applied mathematics, and in most of the natural 
sciences. For example, the shapes of molecular clusters adsorbed on the surface 
of a metal catalyst are of major importance in chemistry. Many of the essential 
aspects of this problem can be studied by modeling the molecules by square-cell 
configurations which we call animals. The animals with at most five cells are 
shown in Fig. 1. We are interested in the intrinsic shapes of animals and in the 
present study we shall not distinguish between animals that are mirror images, or 
generated by rotation from each other. These rotated and reflected versions will 
be considered as different placements of the same animal A. The problem of 
determining the exact number of animals with n cells is discussed in [1]. 
Statistical properties of animals and their embeddings in lattices are important in 
modeling a variety of physical problems [2, 3]. There is a need for efficient 
techniques for describing and comparing the shapes of animals. A simple 
technique will be proposed for this purpose, based on the novel concepts of 
similarity and complexity measure of animal shapes which we now develop. 

To facilitate the development of our complexity measure, an intuitive de- 
scription of the conceptual framework will be given. The concepts listed below 
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Fig. 1. List of square-cell configurations 
(animals) of five cells or less. Animals related 
to one another by rotation or reflection are 
regarded equivalent and only one animal is 
listed from each equivalence class 

appear in [4]. A point u inside a Jordan curve J in the plane is said to see that 
part of J consisting of all points x of J for which the interior of the straight line 
segment ux contains no point of J. A seeing basis B for seeing J is a set of points 
in the interior of J such that B sees J and for each point u ~ B, the subset B - u 
does not see all of J. Thus each seeing basis B is a minimal set of points that see 
J, in the sense that no proper subset of B will do. A minimum seeing basis B for 
J is a seeing basis B such that no other basis B' contains fewer points, i.e., 
[B[ <~ IB']. We shall study the shape features and simple transformations (called 
squashing) of special Jordan curves which can be treated by the techniques of 
graph theory, where the seeing properties of certain subgraphs (called maximal 
submeshes) are not altered by the transformations. 

It is possible to approximate the interior of a Jordan curve by a family of 
inscribed squares of uniform size. These families of squares can be regarded as 
square-cell animals, and the problem of seeing a Jordan curve J suggests a 
connection with characterizing the shape of animals. 

Animals are definable as certain subgraphs of a mesh. By definition [5], the 
mesh M(m,n ) is the cartesian product Pm × Pn of two nontrivial paths ~P,~ and pn. 
When m = n, then we write M(n ) for the mesh Pn × Pn (see Fig. 2). The interior 
of a given drawing of a graph G in the plane is the union of open point sets 
enclosed by the cycles of G. A simply connected subgraph S of a mesh M has no 
holes, that is, each node v and each cell c of the mesh M falling within the 
interior of S is also a node and a cell, respectively, of S. We follow the graph 

[ ]  1-i-1 I- i-r-t  
M2 M2,3 M2,4 M2,5 

M 3 M3,4 : P3× P4 M 4 

Fig. 2. Some of the simple meshes. A mesh M(m,n ) is defined 
as the cartesian product Pm X Pn of two nontrivial paths Pm 
and P, 
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[__[-] ~ _ ]  ~ ]  ~-~ Fig. 3. The Jordan curves associated with the 
I [ five four-cell animals of Fig. 1 

theoretic notation and terminology of  [6, 7]. A block is a connected graph with 
no cutnodes. Since our goal is shape characterization of simply connected 
square-cell configurations in the plane, it is useful to define lattice animals in 
terms of Jordan curves on a lattice. A Jordan cycle C of a mesh Me, ) is a cycle 
that is a subgraph of mesh M(,) and has a vertex degree of  two for all of  its nodes 
[8]. A subgraph A of mesh M(,) is an animal if A contains precisely all the edges 
and nodes of  M(n) that fall on or within the interior of  some Jordan cycle C of  
mesh M(,) [8]. As implied by this definition, each animal A is a simply connected 
block. Although this definition is limited to simply connected entities, one should 
note that in a different context it is often useful to extend this definition to 
multiply connected arrangements. In the literature lattice animals are often 
allowed to be multiply connected. However, in this study we shall not be 
concerned with such generalizations. 

Each 4-cycle C4 contained in A is called a cell c of  A. The perimeter of  A 
contains all edges of A which are on exactly one cell. Thus the perimeter of A is 
the Jordan cycle C defining the animal; hence, as a point set, it is a single Jordan 
curve J(A). The Jordan curves associated with the 4-cell animals are listed in Fig. 
3. Clearly, every 4-cycle inside the perimeter of  an animal A is a subgraph of  A. 

The problem of  seeing a Jordan curve J is trivially simple if the curve is a 
convex polygon, since then every seeing basis consists of  just a single point, 
which may be arbitrarily chosen inside J. Among convex polygons, rectangles 
have the simplest properties. Rectangles can be approximated very simply by a 
family of squares ordered into rows and columns. Some of these squares can be 
regarded as cells of  animals; hence it is natural to consider the mesh and various 
submeshes of  animals as tools of  shape characterization of  both the animals 
themselves and the Jordan curves related to the animals by some approximate 
representation. 

2. Animal codes 

The (circumscribed) mesh M(A) of an animal A is the unique smallest mesh M(m,,) 
containing A as a subgraph. Thus animal A can be represented as a rectangular 
(m - 1) x (n - 1) matrix R(A) = [r/j] where r~ = 1 if the/ , j -cel l  of mesh M(m,,) is 
a cell of  A, while r o. = 0 otherwise, as introduced in [7]. Recall that we shall not 
distinguish between animals that are mirror images or can be obtained from each 
other by rotations in the plane as we are primarily interested in their intrinsic 
shape features. The chirality properties of square-cell configurations are dis- 
cussed elsewhere [8]. However, the freedom in rotations and reflections of  the 
M(A), A pair in the plane lead to additional matrix representations. Figure 4 
shows an animal A, its mesh M(A) and the corresponding matrix R(A). Obvi- 
ously, a matrix R(A) need not be unique, as shown in Fig. 5 where RI(A) and 
R2(A) and their transposes R'i(A) are all different matrices obtained from the 
same animal A. 

A 

~ .cA,= ~ : : Fig. 4. Example for an animal A, its mesh M(A), and 
M(A) matrix R(A) 
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Fig. 5. Alternative matrices for animal A of Fig. 4 

These considerations suggest a code c(A) for an animal A. For  each animal 
A, there are four possible R-matr ix  pairs, where the two matrices in each pair are 
the transposes of  each other. In the case of  an m x n mesh of A, illustrated for 
m - 1 = 2, these matrices can be given as follows, where ~Ol is the binary string 
which is row 1 of matrix R1 and q~2 is row 2 of RI: 

R1 = ~°1, Rz = (P2 R3 = 0"1, R4 = o-2, 
q)2 q)l 0"2 0"1 (1) 

then the other matrices are 

R 2 =  ;32, 

(Pl 

R1 (A) = q~2 

R 3 --- R 4 = 

0"3 0"1 

t R s = R ' I ,  R 6 = R 2 ,  R 7 = R ; ,  a n d R s = R • .  

Note  that, not all of  the eight matrices are necessarily different. 
The binary number b(R 1) of  the binary matrix R1 is the concatenation qh ° 02. 

Thus for RI(A) in Fig. 5 we have b(RI(A)) = 110111 = 55. In general, the binary 
number b(R) of R is obtained by concatenation of the rows of R. We can now 
define the code c(A) of  an animal A as follows: 

c(A) = max{b(R~), i = 1, 2 , . . . ,  8}. (2) 

This gives c(A) = 111110=62 for the code of  animal A of  Fig. 4, as given by 
matrix R2(A) of  Fig. 5. 

Note that if the number of  rows differs f rom the number of  columns then the 
matrix representation Ri(A) for which b(Ri)=c(A) and the corresponding 
placement of  A are not necessarily unique. In the example, the transpose 
R'2(A) = R6(A) of R2(A) has the same binary number b, b(R6) = b(R2) = c(A), 
and the two placements of  A and the corresponding two matrices realize the code 
c(A). We shall choose a standard placement for each animal A, a placement that 
has a matrix representation R~(A) with binary number b(Re) equal to the code 
c(A) of  A. 

R 5 = R ' I ,  R 6 = R ~ ,  R 7 = R~, and R 8 = R~. 

Matrix Rz has q~l and q~2 interchanged, exactly as in Fig. 5. Symbol al is used to 
denote the reverse of  row 1; for example, row 1 in R(A) of Fig. 4 is the reverse 
of  q~l of  RI(A) in Fig. 5 :0  1 1 compared with 1 1 0. In general, matrices R2 and 
R 4 contain the rows 1, 2 . . . .  m -  1 of  matrices R 1 and R3, respectively, in 
reversed order, m - 1, . . .  1. For  example, when an animal A has a matrix with 
three rows, 
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In general, we chose the standard placement of the animal A as the one that 
corresponds to the code generating matrix Ri(A) [b(Ri) = c(A)] if this matrix is 
unique, and if there are two different matrices generating the code, then we take 
the one that has fewer rows than columns, m < n; there can exist at most two 
different matrices with the same maximal binary number  b(Ri )= e(A), and if 
there are two such matrices, then one of  them must have m < n, the other m > n. 

In the above example, this choice leads to Rz(A ) of  Fig. 5 as the matrix 
corresponding to the standard placement of  A. In general, the condition m < n 
leads to a unique choice of  placement, since if two or more rotated or reflected 
versions of  the same animal A have the same binary number b(R~), while m < n 
for each, then all these placements are indistinguishable, and hence are regarded 
as being the same. For  example, "Skinny",  the first four-cell animal listed in Fig. 
1, is shown in its standard placement, having matrix R~ (A) = (1, 1, 1, 1) and code 
c(A) = 1111. This placement is indistinguishable from all those obtained by 
vertical or horizontal reflections or 180 ° rotations, and these are precisely the 
placements which have the same binary number  b(Ri) = (1, 1, 1, 1) and fulfill the 
condition m < n for their matrices. For  "Fat ty" ,  the last four-cell animal in Fig. 
1, all rotated and reflected versions are indistinguishable from one another, all 
matrix representations are equivalent, and hence there is only one matrix, 
R = R~ = Rj, and c(A) = b(Ri) , i , j  = 1, 2 , . . . ,  8. 

The code c(A) itself does not completely determine the animal A as the values 
of  m and n are also needed in order to determine the circumscribed mesh M(A) 
of A. For  example, the code c(A) = 1111 may be that of  Skinny or Fatty. Note,  
however, that c(A) and the number of  rows m - 1 determines n. (At least m - 1 
zeroes would be required to be placed in front of  the binary code c(A) in order 
to increase the number of  columns of  the matrix and decatenate the code in a 
different way, leading to a different animal; however, the first row of the matrix 
realizing the code must start with fewer than (m - 1)/2 zeroes, otherwise another 
placement would have a greater binary number.) Consequently, a determining 
numerical invariant i(A) of any animal A is the ordered pair, in which c = c(A): 

i(A) = (c, m). (3) 

I f  d(c) is the number digits in the binary number c, then the number n of  columns 
is equal to d(e)/(m - 1) if this is an integer, otherwise n = int[d(c)/(m - 1)] + 1. 

3. Similarity and complexity of animal shapes 

Now we turn to the specification of the shape of an animal A by means of a 
precise equivalence called shape similarity, or simply, similarity for brevity. A 
maximal submesh M of A is a subgraph of A which is a mesh not contained in 
any larger submesh of  A. Clearly, every animal A has a well-defined set of  
maximal submeshes. For  convenience and without any ambiguity, we identify 

N = north = top, W = west = left, S = south = bot tom E = east = right. 

The symbol X will be used for a general direction, X e {N, W, S, E}. The 
direction obtained from J( by a counterclockwise rotation of 90 degrees is 
denoted by X', for example, N'  = W, N" = S, and N "  = E. Animal A of  Fig. 4 
has two maximal submeshes: M(2,4 ) at  its south and Mc3 ) at its east. 

By definition, a line of a mesh m(m,n ) is a row of  m -- 1 cells or a column of  
n -- 1 cells of  the mesh. The X-line of  a mesh M is the family of  all cells on the 
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A I~ M 2 M3 

Fig. 6. Example of an animal A, and its 
three maximal submeshes, M 1 , M2, and 
M3. 

Z-side of  M. The (X -- 1)-line of M is the X-line of the mesh obtained from M 
by removing its Z-line. The (X - k)-line of  M is defined by recursion. 

Below we describe a process for contracting a given animal A to a smaller 
animal of similar shape. We do this b y  diminishing a maximal submesh of A 
when possible, while preserving the essential shape features of A. This process 
will be called squashing and will be accomplished in stages by operations called 
elementary squashings. An elementary squashing is accompanied by the fusion of 
certain cells. We illustrate the procedure before stating it precisely, using the 
example of  animal A in Fig. 6. Animal A has three maximal submeshes M1, M2 
and M3. Each submesh has four sides, its N-line, W-line, S-line, and E-line, in 
the directions of  N, S, W, and E, respectively. 

Stated informally, the fusion of two neighboring cells el and c2 of an animal 
A is the replacement of the two cells by a new cell e3, so that along the X, X" 
directions defined by the two cells their neighbor relations with any other cells of 
A are inherited by c3. Formally, this may be stated as follows: Fusion of  two cells 
cl and e2 of  an animal A, where e 2 is the X-neighbor of e~ for direction X, occurs 
when the pair el and c 2 are replaced by a cell c3, so that the X-neighbor of c2 and 
the X"-neighbor of e~ become the respective X- and X"-neighbors of cell e3 in the 
resulting new animal. Before fusion, the two cells have six edges available for 
neigbor relations with additional cells, whereas the new, fused cell has only four 
edges. Whether two neighbor cells are fusible or not depends on the local and 
global pattern of neighbor relations among the cells. 

Cells el and e 2 of an animal A are locally fusible if e z is the X-neighbor of el 
for some direction X, and both of  the X' and X"  edges of the cells el and ez are 
on the perimeter of A. I f  several fusions are carried out simultaneously, then 
certain cell pairs that are not locally fusible still can be fused, since fusion of  
some neighboring cells may eliminate some neighbor relations which prevent 
fusion of  individual pairs. 

In order to squash a submesh, we need to fuse pairs of lines of  the submesh. 
Such an operation is not always feasible. For  example, if an additional cell e exists 
at the X' end of the (X - 1)-line of a submesh M of an animal A, then identifying 
the X-line with the ( X -  D-line could not lead to another animal, since the 
neighbor relation of e with the X' end of the new X-line would be undecided. 

Two families {eli , i = 1, k} and {ezi, i = l, k} of cells of an animal A are 
simultaneously fusible if there exists a common direction X such that in each pair 
eli, c2i 

(i) the cell c2i is the X-neighbor of c . ,  

(ii) the pair of X'-edges of c .  and c2; is either on the perimeter of A or is a pair 
of X'-edges of another c u and c2j pair from the respective families, 

(iii) the pair of  X"-edges of c .  and c2~ is either on the perimeter of A or is a pair 
of X'-edges of  another c u and c2j pair from the respective families. 

A special case of simultaneous fusion applies to lines of  certain maximal 
submeshes. 
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A maximal submesh M of A is X-fusible if it has an ( X -  k)-line and an 
( X - k -  1)-line and if the X' and X"  cells of both the ( X - k ) - l i n e  and 
(X - k - 1)-line of M are on the perimeter of A. These lines are called X-fusible 
line pairs of M. The process of X-fusing an X-fusible maximal submesh M of A 
is defined as the simultaneous fusion of each cell c of an (X - k)-line with the cell 
c" on its X" side, where the pair (X -k) - l ine  and ( X -  k - 1)-line of M is an 
X-fusible line pair. 

A maximal submesh M of A is X-squashable if M is X-fusible, and X-fusing 
M 

(i) converts M into a maximal submesh M'  of a square cell configuration that is 
still an animal, 

(ii) leaves the number of maximal submeshes invariant. 

A nontrivial elementary squashing (elementary X-squashing) of an animal A is 
the X-fusing of an X-squashable maximal submesh M of A. The trivial elemen- 
tary squashing of A (no squashing) does not alter A. For example, animal A of 
Fig. 4 admits only one nontrivial elementary squashing, namely, the removal of 
the two easternmost cells of A, resulting in the second 3-cell animal of Fig. 1. 

In order to define a sequence for elementary squashings, we shall order the 
maximal submeshes Mj of the animal. Take the matrix representation Ri (A) of 
the standard placement of the animal A, retain only those matrix elements which 
correspond to the cells of M/and  replace all other elements with 0. Concatenation 
of the rows of the resulting matrix defines a binary code e(Mj) of the maximal 
submesh Mj of A. In the standard placement of the animal A each maximal 
submesh M/has  a unique code c(M/). The maximal submeshes of A are ordered 
according to the decreasing order of their codes. The primary squashable maximum 
submesh M1 of A is the squashable submesh of greatest binary code e(M/). 

A squashing of an animal A is a sequence of elementary squashings, generating 
a finite sequence of animals, where in each step the number of cells of the animals 
decrease. In each step an elementary squashing is carried out on the primary 
squashable maximal submesh M1 of the current animal. The elementary squashing 
is performed at the N-fusible pair of (N - k)- and (N - k - 1)-lines of smallest 
possible k value along the N direction of the standard placement of the current 
animal if M1 is N-squashable. Otherwise the elementary squashing is carried out 
at the W-fusible pair of (W - k)- and (W - k - 1)-lines of smallest possible k value 
along the W direction of the standard placement. Since M1 is squashable, it must 
be squashable along at least one of these two directions. The procedure is repeated 
for the new animal obtained. Starting from a given animal A, the sequence of 
elementary squashings and that of the animals obtained are well defined. 

Now, two animals A1 and A2 are shape-similar (or more briefly, similar) if 
there is an animal A which can be obtained from both A~ and A2 by squashings. 
Obviously, similarity is an equivalence relation since it is reflexive, symmetric and 
transitive. 

An animal which has no nontrivial elementary squashing is called irreducible. 
Clearly, every animal A is similar to a unique irreducible animal A °. We say that 
A ° is the canonical form of A. In Fig. 7 a squashing sequence of two elementary 
squashings of animal A of Fig. 6 is shown, leading to the canonical form A °. 
Figure 8 shows the irreducible animals taken from Fig. 2. 

The number of n-cell animals will be denoted an and the number of those 
which are irreducible by e,; Table 1 gives the values of an and cn for n ~< 5. 
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Fig. 7. A squashing of animal A of  Fig. 6 by a 
sequence of two elementary squashings 

Fig. 8. List of  canonical animals of Fig. 1 

Now we can define an invariant of an animal A which gives an indication of 
how complicated its shape is: The complexity number of an animal A, with 
respect to shape, is the number n ° of cells in A °. 

Each maximal submesh is visible from any one of its interior points. Since 
squashing of an animal A preserves the number of maximal submeshes, there 
exist relations between the seeing graphs of animals and that of their canonical 
forms, as well as a dependence of seeing graphs on the complexity number. These 
relations will be explored in a subsequent study. 

4. Comments and suggestions for future applications 

This formulation enables one to use just one positive integer to serve both 
intuitively and meaningfully as a numerical specification of the complexity of the 
shape of an animal. Furthermore, every Jordan curve J can be successively 
approximated by the perimeters of a sequence of square-cell animals of gradually 
decreasing cell size. Thus, this approach shows promise for leading to a formula- 
tion of the complexity of the shape of a curve J. 

The approach proposed is also suitable for analyzing shape similarity, 
illustrating the similarity principle suggested in [9]: geometrical similarity can be 
treated as topological equivalence. Shape similarity of square-cell animals is 
defined as an equivalence relation, based on sharing a common canonical form. 

Among applications in the natural sciences, the shape characterization of 
two-dimensional solids and molecular aggregates on the surfaces of catalysts 
appears to have special importance (see, e.g. [10] and references therein). The 
complexity measure is expected to show close relations with reactivity, since it is 

Table 1. The numbers an of animals and ¢n of  
canonical animals for n <~ 5 

n 1 2 3 4 5 

a~ 1 1 2 5 12 
c~ 1 0 1 2 5 
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assumed  tha t  a two-d imens iona l  cluster  o f  a more  " r u g g e d "  a ppe a ra nc e  is l ikely 
to undergo  b o t h  physical  r ea r rangements  and  chemical  reac t ions  more  readi ly  
than  aggregates  wi th  smoo the r  boundar ies .  This  " ruggedness"  can be charac te r -  
ized using the shape complex i ty  measure  p r o p o s e d  in this study.  The  aggregate  
i tself  m a y  also serve as a catalyst ,  and  the solid m a y  take  the role o f  mere  
suppor t  for  the two-d imens iona l  aggregate ,  I t  is expected tha t  an aggregate  wi th  
a greater  complex i ty  n u m b e r  has a more  p r o n o u n c e d  ca ta ly t ic  effect. 

W e  p lan  to invest igate la te r  the co r re spond ing  deve lopmen t  o f  the  complex i ty  
o f  th ree -d imens iona l  polycubes .  These are to two-d imens iona l  surfaces and  their  
shapes as an imals  are  to J o r d a n  curves and  their  shapes.  
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